Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 443
Filtrar
1.
J Am Chem Soc ; 146(14): 9790-9800, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38549219

RESUMO

HDM2 negatively regulates the activity of the tumor suppressor p53. Previous NMR studies have shown that apo-HDM2 interconverts between an "open" state in which the N-terminal "lid" is disordered and a "closed" state in which the lid covers the p53-binding site in the core region. Molecular dynamics (MD) simulation studies have been performed to elucidate the conformational dynamics of HDM2, but the direct relevance of the experimental and computational analyses is unclear. In addition, how the phosphorylation of S17 in the lid contributes to the inhibition of p53 binding remains controversial. Here, we used both NMR and MD simulations to investigate the conformational dynamics of apo-HDM2. The NMR analysis revealed that apo-HDM2 exists in a fast-exchanging equilibrium within two closed states, closed 1 and closed 2, in addition to a previously demonstrated slow-exchanging "open-closed" equilibrium. MD simulations visualized two characteristic closed states, where the spatial orientation of the key residues corresponds well to the chemical shift changes of the NMR spectra. Furthermore, the phosphorylation of S17 induced an equilibrium shift toward closed 1, thereby suppressing the binding of p53 to HDM2. This study reveals a multi-state equilibrium of apo-HDM2 and provides new insights into the regulation mechanism of HDM2-p53 interactions.


Assuntos
Simulação de Dinâmica Molecular , Proteína Supressora de Tumor p53 , Proteína Supressora de Tumor p53/química , Proteínas Proto-Oncogênicas c-mdm2/química , Ligação Proteica , Espectroscopia de Ressonância Magnética
2.
Mol Biol Evol ; 41(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38301272

RESUMO

The transcription factor and cell cycle regulator p53 is marked for degradation by the ubiquitin ligase MDM2. The interaction between these 2 proteins is mediated by a conserved binding motif in the disordered p53 transactivation domain (p53TAD) and the folded SWIB domain in MDM2. The conserved motif in p53TAD from zebrafish displays a 20-fold weaker interaction with MDM2, compared to the interaction in human and chicken. To investigate this apparent difference, we tracked the molecular evolution of the p53TAD/MDM2 interaction among ray-finned fishes (Actinopterygii), the largest vertebrate clade. Intriguingly, phylogenetic analyses, ancestral sequence reconstructions, and binding experiments showed that different loss-of-affinity changes in the canonical binding motif within p53TAD have occurred repeatedly and convergently in different fish lineages, resulting in relatively low extant affinities (KD = 0.5 to 5 µM). However, for 11 different fish p53TAD/MDM2 interactions, nonconserved regions flanking the canonical motif increased the affinity 4- to 73-fold to be on par with the human interaction. Our findings suggest that compensating changes at conserved and nonconserved positions within the motif, as well as in flanking regions of low conservation, underlie a stabilizing selection of "functional affinity" in the p53TAD/MDM2 interaction. Such interplay complicates bioinformatic prediction of binding and calls for experimental validation. Motif-mediated protein-protein interactions involving short binding motifs and folded interaction domains are very common across multicellular life. It is likely that the evolution of affinity in motif-mediated interactions often involves an interplay between specific interactions made by conserved motif residues and nonspecific interactions by nonconserved disordered regions.


Assuntos
Proteína Supressora de Tumor p53 , Peixe-Zebra , Animais , Humanos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/metabolismo , Filogenia , Estrutura Terciária de Proteína , Ligação Proteica , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/química , Proteínas Proto-Oncogênicas c-mdm2/metabolismo
3.
J Enzyme Inhib Med Chem ; 39(1): 2288810, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38059334

RESUMO

Disruption of p53-MDM2/MDMX interaction by smaller inhibitors is a promising therapeutic intervention gaining tremendous interest. However, no MDM2/MDMX inhibitors have been marketed so far. Drug repurposing is a validated, practical approach to drug discovery. In this regard, we employed structure-based virtual screening in a reservoir of marketed drugs and identified nintedanib as a new MDM2/MDMX dual inhibitor. The computational structure analysis and biochemical experiments uncover that nintedanib binds MDM2/MDMX similarly to RO2443, a dual MDM2/MDMX inhibitor. Furthermore, the mechanistic study reveals that nintedanib disrupts the physical interaction of p53-MDM2/MDMX, enabling the transcriptional activation of p53 and the subsequent cell cycle arrest and growth inhibition in p53+/+ cancer cells. Lastly, structural minimisation of nintedanib yields H3 with the equivalent potency. In summary, this work provides a solid foundation for reshaping nintedanib as a valuable lead compound for the further design of MDM2/MDMX dual inhibitors.


Assuntos
Antineoplásicos , Proteínas Proto-Oncogênicas c-mdm2 , Proteínas Proto-Oncogênicas c-mdm2/química , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Reposicionamento de Medicamentos , Antineoplásicos/farmacologia , Antineoplásicos/química , Ligação Proteica
4.
Curr Med Chem ; 30(32): 3668-3701, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37190755

RESUMO

Discovery of MDM2 and MDM2-p53 interaction inhibitors changed the direction of anticancer research as it is involved in about 50% of cancer cases globally. Not only the inhibition of MDM2 but also its interaction with p53 proved to be an effective strategy in anticancer drug design and development. Various molecules of natural as well as synthetic origin have been reported to possess excellent MDM2 inhibitory potential. The present review discusses the pathophysiology of the MDM2-p53 interaction loop and MDM2/MDM2-p53 interaction inhibitors from literature covering recent patents. Focus has also been put on characteristic features of the active site of the target and its desired interactions with the currently FDA-approved inhibitor. The designing approach of previously reported MDM2/MDM2-p53 interaction inhibitors, their SAR studies, in silico studies, and the biological efficacy of various inhibitors from natural as well as synthetic origins are also elaborated. An attempt is made to cover recently patented MDM2/MDM2- p53 interaction inhibitors.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Proteína Supressora de Tumor p53 , Proteínas Proto-Oncogênicas c-mdm2/química , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Neoplasias/tratamento farmacológico , Desenho de Fármacos
5.
Drug Des Devel Ther ; 17: 1247-1274, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37128274

RESUMO

Introduction: Therapeutic peptides are a significant class of drugs in the treatment of a wide range of diseases. To enhance their properties, such as stability or binding affinity, they are usually chemically modified. This includes, among other techniques, cyclization of the peptide chain by bridging, modifications to the backbone, and incorporation of unnatural amino acids. One approach previously established, is the use of halogenated aromatic amino acids. In principle, they are thereby enabled to form halogen bonds (XB). In this study, we focus on the -R-CF2X moiety (R = O, NHCO; X = Cl, Br) as an uncommon halogen bond donor. These groups enable more spatial variability in protein-protein interactions. The chosen approach via Fmoc-protected building blocks allows for the incorporation of these modified amino acids in peptides using solid-phase peptide synthesis. Results and Discussion: Using a competitive fluorescence polarization assay to monitor binding to Mdm4, we demonstrate that a p53-derived peptide with Lys24Nle(εNHCOCF2X) exhibits an improved inhibition constant Ki compared to the unmodified peptide. Decreasing Ki values observed with the increasing XB capacity of the halogen atoms (F ≪ Cl < Br) indicates the formation of a halogen bond. By reducing the side chain length of Nle(εNHCOCF2X) to Abu(γNHCOCF2X) as control experiments and through quantum mechanical calculations, we suggest that the observed affinity enhancement is related to halogen bond-induced intramolecular stabilization of the α-helical binding mode of the peptide or a direct interaction with His54 in human Mdm4.


Assuntos
Aminoácidos , Proteína Supressora de Tumor p53 , Humanos , Peptídeos/química , Halogênios/química , Proteínas Proto-Oncogênicas c-mdm2/química , Proteínas Proto-Oncogênicas , Proteínas de Ciclo Celular
6.
J Mol Graph Model ; 122: 108472, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37086514

RESUMO

Cancer is one of the leading causes of mortality in the world. Despite the existence of diverse antineoplastic treatments, these do not possess the expected efficacy in many cases. Knowledge of the molecular mechanisms involved in tumor processes allows the identification of a greater number of therapeutic targets employed in the study of new anticancer drugs. In the last decades, peptide-based therapy design using computational chemistry has gained importance in the field of oncology therapeutics. This work aims to evaluate the electronic structure, physicochemical properties, stability, and inhibition of ETFS amino acids and peptides derived from the p53-MDM2 binding domain with action in cancer cells; by means of chemical descriptors at the DFT-BHandHLYP level in an aqueous solution, and its intermolecular interactions through molecular docking studies. The results show that The ETFS fragment plays a critical role in the intermolecular interactions. Thus, the amino acids E17, T18 and S20 increase intermolecular interactions through hydrogen bonds and enhance structural stability. F19, W23 and V25 enhance the formation of the alpha-helix. The hydrogen bonds formed by the backbone atoms for PNC-27, PNC-27-B and PNC-28 stabilize the α-helices more than hydrogen bonds formed by the side chains atoms. Also, molecular docking indicated that the PNC27B-MDM2, PNC28B-MDM2, PNC27-MDM2 and PNC28A-MDM2 complexes show the best binding energy. Therefore, DFT and molecular docking studies showed that the proposed peptides: PNC-28B, PNC-27B and PNC-28A could inhibit the binding of MDM2 to the p53 protein, decreasing the translocation and degradation of p53 native protein.


Assuntos
Aminoácidos , Proteína Supressora de Tumor p53 , Proteína Supressora de Tumor p53/química , Simulação de Acoplamento Molecular , Aminoácidos/farmacologia , Aminoácidos/metabolismo , Teoria da Densidade Funcional , Proteínas Proto-Oncogênicas c-mdm2/química , Peptídeos/química , Ligação Proteica
7.
J Biomol Struct Dyn ; 41(12): 5817-5826, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35822492

RESUMO

Cancer is a major global health issue that has a high mortality rate. p53, which functions as a tumor suppressor, is critical in preventing tumor development by regulating the cell cycle and inducing apoptosis in damaged cells. However, the tumor suppressor function of p53 is effectively inhibited by its direct interaction with the hydrophobic cleft of MDM2 protein via multiple mechanisms As a result, restoring p53 activity by blocking the p53-MDM2 protein-protein interaction has been proposed as a compelling therapeutic strategy for cancer treatment. The use of molecular docking and phytochemical screening procedures are appraised to inhibit MDM2's hydrophobic cleft and disrupt the p53-MDM2 interaction. For this purpose, a library of 51 bioactive compounds from 10 medicinal plants was compiled and subjected to structure-based virtual screening. Out of these, only 3 compounds (Atalantoflavone, Cudraxanthone 1, and Ursolic acid) emerged as promising inhibitors of MDM2-p53 based on their binding affinities (-9.1 kcal/mol, -8.8 kcal/mol, and -8.8 kcal/mol respectively) when compared to the standard (-8.8 kcal/mol). Moreover, these compounds showed better pharmacokinetic and drug-like profiling than the standard inhibitor (Chromonotriazolopyrimidine 1). Finally, the 100 ns MD simulation analysis confirmed no significant perturbation in the conformational dynamics of the simulated binary complexes when compared to the standard. In particular, Ursolic acid was found to satisfy the molecular enumeration the most compared to the other inhibitors. Our overall molecular modeling finding shows why these compounds may emerge as potent arsenals for cancer therapeutics. Nonetheless, extensive experimental and clinical research is needed to augment their use in clinics.Communicated by Ramaswamy H. Sarma.


Assuntos
Neoplasias , Plantas Medicinais , Humanos , Simulação de Acoplamento Molecular , Proteína Supressora de Tumor p53/química , Proteínas Proto-Oncogênicas c-mdm2/química , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Dimerização , Neoplasias/tratamento farmacológico , Ligação Proteica , Ácido Ursólico
8.
Curr Med Chem ; 30(10): 1193-1206, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35702782

RESUMO

BACKGROUND: Mouse Double Minute 2 Homolog (MDM2) oncogenic protein is the principal cellular antagonist of the p53 tumor suppressor gene. Restoration of p53 activity by inhibiting the MDM2-P53 interactions at the molecular level has become the cornerstone of cancer research due to its promising anticancer effects. Natural medicinal products possess various chemical structures and represent an essential source for drug discovery. α-Mangostin (AM) and gambogic acid (G250) are plant-derived compounds that showed inhibitory effects on MDM2-P53 interactions in vitro and in vivo. METHODS: Despite the many clinical studies which performed deeper insight about the molecular understanding of the structural mechanisms exhibited by α-Mangostin and Gambogic acid-binding to MDM2 remains critical. In this study, comparative molecular dynamics simulations were performed for each Apo and bound p53 and MDM2 proteins to shed light on the MDM2-p53 interactions and get a better understanding of the inhibition mechanisms. RESULTS: Results revealed atomistic interaction of AM and G250 within the MDM2-p53 interaction cleft. Both compounds mediate the interaction between the α-helix motifs of the p53 amino-terminal domain, which caused a significant separation between orthogonally opposed residues, specifically Lys8 and Gly47 residues of the p53 and MDM2, respectively. Contrasting changes in magnitudes were observed in per-residue fluctuation on AM and G250 (~0.04 nm and ~2.3 nm, respectively). The Radius of gyration (~0.03 nm and 0.04 nm, respectively), C-alpha deviations (~0.06 nm and 0.1 nm, respectively). The phenolic group of AM was found to establish hydrogen interactions with Glu28 and His96 residues of MDM2. The trioxahexacyclo-ring of G250 also forms hydrogen bond interactions with Lys51 and Leu26 residues of MDM2. CONCLUSION: Utilizing the information provided on the inhibitory binding mode adopted by each compound in this study may further assist in the tailored designs for cancer therapeutics.


Assuntos
Neoplasias , Proteínas Proto-Oncogênicas c-mdm2 , Animais , Camundongos , Simulação de Dinâmica Molecular , Neoplasias/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas c-mdm2/química , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/metabolismo
9.
J Mol Biol ; 434(22): 167844, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36181774

RESUMO

Autoinhibition of p53 binding to MDMX requires two short-linear motifs (SLiMs) containing adjacent tryptophan (WW) and tryptophan-phenylalanine (WF) residues. NMR spectroscopy was used to show the WW and WF motifs directly compete for the p53 binding site on MDMX and circular dichroism spectroscopy was used to show the WW motif becomes helical when it is bound to the p53 binding domain (p53BD) of MDMX. Binding studies using isothermal titration calorimetry showed the WW motif is a stronger inhibitor of p53 binding than the WF motif when they are both tethered to p53BD by the natural disordered linker. We also investigated how the WW and WF motifs interact with the DNA binding domain (DBD) of p53. Both motifs bind independently to similar sites on DBD that overlap the DNA binding site. Taken together our work defines a model for complex formation between MDMX and p53 where a pair of disordered SLiMs bind overlapping sites on both proteins.


Assuntos
Proteínas Proto-Oncogênicas c-mdm2 , Proteína Supressora de Tumor p53 , Fenilalanina/química , Ligação Proteica , Proteínas Proto-Oncogênicas c-mdm2/química , Triptofano/química , Proteína Supressora de Tumor p53/química , Motivos de Aminoácidos , Domínios Proteicos , Humanos
10.
Life Sci Alliance ; 5(12)2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35944929

RESUMO

ARF tumor suppressor protein is a key regulator of the MDM2-p53 signaling axis. ARF interferes with MDM2-mediated ubiquitination and degradation of p53 by sequestering MDM2 in the nucleolus and preventing MDM2-p53 interaction and nuclear export of p53. Moreover, ARF also directly inhibits MDM2 ubiquitin ligase (E3) activity, but the mechanism remains elusive. Here, we apply nuclear magnetic resonance and biochemical analyses to uncover the mechanism of ARF-mediated inhibition of MDM2 E3 activity. We show that MDM2 acidic and zinc finger domains (AD-ZnF) form a weak intramolecular interaction with the RING domain, where the binding site overlaps with the E2∼ubiquitin binding surface and thereby partially reduces MDM2 E3 activity. Binding of human N-terminal 32 residues of p14ARF to the acidic domain of MDM2 strengthens the AD-ZnF-RING domain interaction. Furthermore, the N-terminal RxFxV motifs of p14ARF participate directly in the MDM2 RING domain interaction. This bivalent binding mode of p14ARF to MDM2 acidic and RING domains restricts E2∼ubiquitin recruitment and massively hinders MDM2 E3 activity. These findings elucidate the mechanism by which ARF inhibits MDM2 E3 activity.


Assuntos
Proteínas Proto-Oncogênicas c-mdm2 , Proteína Supressora de Tumor p14ARF , Ubiquitina-Proteína Ligases , Humanos , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/química , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p14ARF/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
11.
Phys Chem Chem Phys ; 24(27): 16799-16815, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35775962

RESUMO

Inhibitors that competitively bind MDM2/MDMX can block the inhibition of P53 by MDM2/MDMX and restart its tumor-suppressive effect. Molecular studies targeting MDM2/MDMX inhibitors have always been a hot topic in anticancer drug design. Although numerous inhibitors have been designed previously against MDM2/MDMX, their dual inhibition efficacy has not been demonstrated, and few studies assessed the general causes affecting the dual inhibition of MDM2/MDMX by these inhibitors. Here, molecular dynamics simulations and alanine scanning combined with the interaction entropy method were employed to precisely investigate whether 16 inhibitors could dually inhibit MDM2/MDMX and the similarities and differences in the interaction modes. Thereby addressing the key residue sites affecting dual inhibition. Residues L54/M53, I61/60, M62/61, Y67/66, and V93/92 of MDM2/MDMX, which are in corresponding positions in both protein structures, provide significant conditions for these inhibitors to bind to MDM2/MDMX tightly. In addition, most of these inhibitors prefer to bind MDM2 than MDMX, and residues H96 and I99 in MDM2 are attractive targets for inhibitors, resulting in inhibitors binding to MDM2/MDMX with different affinity. These key residues should be considered in the development of dual inhibitors. For these 16 inhibitors, most have dual inhibitory potential for MDM2/MDMX based on the binding affinity of the complexes. Still, it is questionable whether they can exert excellent dual inhibition considering the assessment of the hot-spots. At least their binding affinity for MDMX is not superior to that for MDM2 due to the difference in energy of the van der Waals interactions at the key sites. Furthermore, based on the analysis of three representative inhibitors (TUZ/HRH and HRQ with different binding preferences for MDM2/MDMX), 3-chloropyridine in TUZ leads to the differential binding affinity between the inhibitor and MDM2/MDMX. It readily forms hydrophobic interactions with the surrounding residues H96 and I99. But this phenomenon does not occur in the TUZ-MDMX system, implying the critical role of residues H96/P95 and I99/L98. And the completely different binding mechanism of HRQ binding to MDM2/MDMX explains its inability to inhibit MDM2 well. Thus, we are cautious about its dual inhibitory ability. Besides, HRH is more prone to strong van der Waals interactions with MDM2 than MDMX whereas its 2-chlorofluorobenzene is detrimental to this. We hope that these findings will provide reliable molecular insights for the screening and optimization of targeting MDM2/MDMX dual inhibitors.


Assuntos
Antineoplásicos , Proteínas Proto-Oncogênicas c-mdm2 , Antineoplásicos/farmacologia , Proteínas de Ciclo Celular/metabolismo , Simulação de Dinâmica Molecular , Ligação Proteica , Proteínas Proto-Oncogênicas c-mdm2/química , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/química
12.
J Mol Model ; 28(6): 142, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35536362

RESUMO

In the vast majority of malignancies, the p53 tumor suppressor pathway is compromised. In some cancer cells, high levels of MDM2 polyubiquitinate p53 and mark it for destruction, thereby leading to a corresponding downregulation of the protein. MDM2 interacts with p53 via its hydrophobic pocket, and chemical entities that block the dimerization of the protein-protein complex can restore p53 activity. Thus far, only a few chemical compounds have been reported as potent arsenals against p53-MDM2. The Protein Data Bank has crystallogaphic structures of MDM2 in complex with certain compounds. Herein, we have exploited one of the complexes in the identification of new p53-MDM2 antagonists using a hierarchical virtual screening technique. The initial stage was to compile a targeted library of structurally appropriate compounds related to a known effective inhibitor, Nutlin 2, from the PubChem database. The identified 57 compounds were subjected to virtual screening using molecular docking to discover inhibitors with high binding affinity for MDM2. Consequently, five compounds with higher binding affinity than the standard emerged as the most promising therapeutic candidates. When compared to Nutlin 2, four of the drug candidates (CID_140017825, CID_69844501, CID_22721108, and CID_22720965) demonstrated satisfactory pharmacokinetic and pharmacodynamic profiles. Finally, MD simulation of the dynamic behavior of lead-protein complexes reveals the stability of the complexes after a 100,000 ps simulation period. In particular, when compared to the other three leads, overall computational modeling found CID_140017825 to be the best pharmacological candidate. Following thorough experimental trials, it may emerge as a promising chemical entity for cancer therapy.


Assuntos
Proteínas Proto-Oncogênicas c-mdm2 , Proteína Supressora de Tumor p53 , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Proteínas Proto-Oncogênicas c-mdm2/química , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/metabolismo
13.
Biomol NMR Assign ; 16(1): 171-178, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35359247

RESUMO

The human MDMX protein, also known as MDM4, plays a pivotal role in regulating the activity of the tumor suppressor protein p53 by restricting p53 transcriptional activity and stimulating the E3 ubiquitin ligase activity of another key regulatory protein, MDM2, to promote p53 degradation. MDMX is ubiquitously expressed in most tissue types and overexpression of MDMX has been implicated in many forms of cancer. MDMX has been shown to require an intact N-terminal p53-binding domain and C-terminal RING domain to exert inhibitory effects on p53. The presence of a tryptophan-rich sequence in the central acidic domain of MDMX has also been implicated in regulating the interaction between MDMX and p53, directly interacting with the p53 DNA-binding domain. To date, little structural information has been obtained for this acidic region of MDMX that encompasses the Trp-rich sequence. In order to gain insight into the structure and function of this region, we have carried out solution-state NMR spectroscopy studies utilizing the segment of MDMX spanning residues 181-300-with bounds specifically chosen through multiple sequence alignment-which encompasses nearly 25% of MDMX. Here, we report the 1H, 15N and 13C backbone chemical shift assignments of the acidic domain of MDMX and show that it exhibits hallmarks of intrinsic disorder and localized variation in inferred secondary structure propensity.


Assuntos
Proteínas Proto-Oncogênicas c-mdm2 , Proteína Supressora de Tumor p53 , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Humanos , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/química , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ubiquitinação
14.
J Biochem ; 171(6): 601-603, 2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35171268

RESUMO

Glutamate-rich WD40 repeat containing 1 (GRWD1), also known as WDR28, interacts with various proteins through its WD domain and is involved in transcription, translation, cell cycle progression, ubiquitin-mediated degradation and DNA replication and repair. Ribosomal protein L11 (RPL11), which directly interacts with MDM2, inhibits MDM2 ubiquitin ligase activity, thus promoting p53 stabilization. Binding of GRWD1 to RPL11 disrupts the interaction between RPL11 and MDM2 and promotes p53 ubiquitination by MDM2. In addition, a recent report by Fujiyama et al. found that GRWD1 also directly interacts with wild-type p53 and suppresses its transcriptional activity. They propose that GRWD1 is a novel tumor-promoting molecule that negatively regulates wild-type p53 via both indirect and direct mechanisms.


Assuntos
Neoplasias , Proteínas Proto-Oncogênicas c-mdm2 , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Humanos , Neoplasias/genética , Proteínas Proto-Oncogênicas c-mdm2/química , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina/metabolismo , Ubiquitinação
15.
J Biomol Struct Dyn ; 40(19): 9158-9176, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33988074

RESUMO

At present, disrupting p53-MDM2 interactions through small molecule ligands is a promising approach to safe treatment and management of human cancer. Tumor cells unlike the normal cells, are rapidly evolving affecting the efficacy of many approved anti-cancer agents due to drug resistance. Therefore, identifying a potential anticancer compound is crucial. Pharmacophore based virtual screening, followed by molecular docking, ADMET evaluation, and molecular dynamics studies against MDM2 protein was investigated to identify potential ligands that may act as inhibitors. The model (AHRR_1) with survival score (4.176) was selected among the top ranked generated Pharmacophore hypothesis. Validation of the model hypothesis by an external dataset of actives and inactive compounds produced significant validation attributes including; AUC = 0.85, BEDROC = 0.56 at α = 20.0, RIE = 8.18, AUAC = 0.88, and EF of 6.2 at the top 2% of the dataset. The model was use for screening the ZINC database, and the top 1375 hits satisfying the model hypothesis were subjected to molecular docking studies to understand the molecular and structural basis of selectivity of compounds for MDM2 protein. A sub-set of 25 compounds with binding energy lower than the reference inhibitors were evaluated for pharmacokinetic properties. Four compounds (ZINC02639178, ZINC06752762, ZINC38933175, and ZINC77969611) showed the most desired pharmacokinetic profile. Lastly, investigation of the dynamic behaviour of leads-protein complexes through MD simulation showed similar RMSD, RMSF, and H-bond occupancy profile compared to a reference inhibitor, suggesting stability throughout the simulation time. However, ZINC02639178 was found to satisfy the molecular enumeration the most compared to the other three leads. It may emerge as potential treatment option after extensive experimental studies. Communicated by Ramaswamy H. Sarma.


Assuntos
Neoplasias , Proteínas Proto-Oncogênicas c-mdm2 , Humanos , Proteínas Proto-Oncogênicas c-mdm2/química , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Simulação de Acoplamento Molecular , Proteína Supressora de Tumor p53/química , Ligação Proteica , Ligantes , Simulação de Dinâmica Molecular , Neoplasias/tratamento farmacológico
16.
Molecules ; 26(24)2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34946727

RESUMO

A series of novel S-, O- and Se-containing dispirooxindole derivatives has been synthesized using 1,3-dipolar cycloaddition reaction of azomethine ylide generated from isatines and sarcosine at the double C=C bond of 5-indolidene-2-chalcogen-imidazolones (chalcogen was oxygen, sulfur or selenium). The cytotoxicity of these dispiro derivatives was evaluated in vitro using different tumor cell lines. Several molecules have demonstrated a considerable cytotoxicity against the panel and showed good selectivity towards colorectal carcinoma HCT116 p53+/+ over HCT116 p53-/- cells. In particular, good results have been obtained for LNCaP prostate cell line. The performed in silico study has revealed MDM2/p53 interaction as one of the possible targets for the synthesized molecules. However, in contrast to selectivity revealed during the cell-based evaluation and the results obtained in computational study, no significant p53 activation using a reporter construction in p53wt A549 cell line was observed in a relevant concentration range.


Assuntos
Antineoplásicos , Neoplasias Colorretais/tratamento farmacológico , Indóis , Neoplasias da Próstata/tratamento farmacológico , Células A549 , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Neoplasias Colorretais/química , Neoplasias Colorretais/metabolismo , Simulação por Computador , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células HCT116 , Células HEK293 , Humanos , Indóis/síntese química , Indóis/química , Indóis/farmacologia , Células MCF-7 , Masculino , Neoplasias da Próstata/química , Neoplasias da Próstata/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/química , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/metabolismo
17.
J Am Chem Soc ; 143(45): 18932-18940, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34739233

RESUMO

Stapled peptides with an enforced α-helical conformation have been shown to overcome major limitations in the development of short peptides targeting protein-protein interactions (PPIs). While the growing arsenal of methodologies to staple peptides facilitates their preparation, stapling methodologies are not broadly embraced in synthetic library screening. Herein, we report a strategy leveraged on hybridization of short PNA-peptide conjugates wherein nucleobase driven assembly facilitates ligation of peptide fragments and constrains the peptide's conformation into an α-helix. Using native chemical ligation, we show that a mixture of peptide fragments can be combinatorially ligated and used directly in affinity selection against a target of interest. This approach was exemplified with a focused library targeting the p-53/MDM2 interaction. One hundred peptides were obtained in a one-pot ligation reaction, selected by affinity against MDM2 immobilized on beads, and the best binders were identified by mass spectrometry.


Assuntos
Ácidos Nucleicos Peptídicos/metabolismo , Peptídeos/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Humanos , Hibridização de Ácido Nucleico , Biblioteca de Peptídeos , Ácidos Nucleicos Peptídicos/química , Ligação Proteica/efeitos dos fármacos , Conformação Proteica em alfa-Hélice , Proteínas Proto-Oncogênicas c-mdm2/química , Proteína Supressora de Tumor p53/química
18.
J Med Chem ; 64(21): 16213-16241, 2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34714078

RESUMO

Identification of low-dose, low-molecular-weight, drug-like inhibitors of protein-protein interactions (PPIs) is a challenging area of research. Despite the challenges, the therapeutic potential of PPI inhibition has driven significant efforts toward this goal. Adding to recent success in this area, we describe herein our efforts to optimize a novel purine carboxylic acid-derived inhibitor of the HDM2-p53 PPI into a series of low-projected dose inhibitors with overall favorable pharmacokinetic and physical properties. Ultimately, a strategy focused on leveraging known binding hot spots coupled with biostructural information to guide the design of conformationally constrained analogs and a focus on efficiency metrics led to the discovery of MK-4688 (compound 56), a highly potent, selective, and low-molecular-weight inhibitor suitable for clinical investigation.


Assuntos
Imidazóis/química , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Piridinas/química , Proteína Supressora de Tumor p53/antagonistas & inibidores , Humanos , Ligação Proteica , Proteínas Proto-Oncogênicas c-mdm2/química , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Relação Estrutura-Atividade , Proteína Supressora de Tumor p53/metabolismo
19.
Int J Mol Sci ; 22(17)2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34502494

RESUMO

The study of protein-protein interactions is of great interest. Several early studies focused on the murine double minute 2 (Mdm2)-tumor suppressor protein p53 interactions. However, the effect of plasma treatment on Mdm2 and p53 is still absent from the literature. This study investigated the structural changes in Mdm2, p53, and the Mdm2-p53 complex before and after possible plasma oxidation through molecular dynamic (MD) simulations. MD calculation revealed that the oxidized Mdm2 bounded or unbounded showed high flexibility that might increase the availability of tumor suppressor protein p53 in plasma-treated cells. This study provides insight into Mdm2 and p53 for a better understanding of plasma oncology.


Assuntos
Complexos Multiproteicos/química , Gases em Plasma/química , Proteínas Proto-Oncogênicas c-mdm2/química , Espécies Reativas de Nitrogênio/química , Espécies Reativas de Oxigênio/química , Proteína Supressora de Tumor p53/química , Humanos
20.
Nature ; 597(7874): 132-137, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34408321

RESUMO

Protein quality control systems are crucial for cellular function and organismal health. At present, most known protein quality control systems are multicomponent machineries that operate via ATP-regulated interactions with non-native proteins to prevent aggregation and promote folding1, and few systems that can broadly enable protein folding by a different mechanism have been identified. Moreover, proteins that contain the extensively charged poly-Asp/Glu (polyD/E) region are common in eukaryotic proteomes2, but their biochemical activities remain undefined. Here we show that DAXX, a polyD/E protein that has been implicated in diverse cellular processes3-10, possesses several protein-folding activities. DAXX prevents aggregation, solubilizes pre-existing aggregates and unfolds misfolded species of model substrates and neurodegeneration-associated proteins. Notably, DAXX effectively prevents and reverses aggregation of its in vivo-validated client proteins, the tumour suppressor p53 and its principal antagonist MDM2. DAXX can also restore native conformation and function to tumour-associated, aggregation-prone p53 mutants, reducing their oncogenic properties. These DAXX activities are ATP-independent and instead rely on the polyD/E region. Other polyD/E proteins, including ANP32A and SET, can also function as stand-alone, ATP-independent molecular chaperones, disaggregases and unfoldases. Thus, polyD/E proteins probably constitute a multifunctional protein quality control system that operates via a distinctive mechanism.


Assuntos
Proteínas Correpressoras/metabolismo , Chaperonas Moleculares/metabolismo , Dobramento de Proteína , Animais , Linhagem Celular , Células/metabolismo , Evolução Molecular , Humanos , Modelos Moleculares , Mutação , Agregados Proteicos , Agregação Patológica de Proteínas/prevenção & controle , Conformação Proteica , Domínios Proteicos , Desdobramento de Proteína , Deficiências na Proteostase/prevenção & controle , Proteínas Proto-Oncogênicas c-mdm2/química , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA